ondragstart="return false" onselectstart="return false" style="cursor:pointer;-moz-user-select: none;user-select:none;margin:0" oncontextmenu="return false"
-
八年级数学 22.2 二次根式的乘除法 华东师大版
-
注:预览偶有瑕疵,不代资料本身有误,请放心下载,如遇资料质量问题,请联系400-080-6798
- 返回
-
八年级数学22.2二次根式的乘除法华东师大版一.教学内容:22.2二次根式的乘除法二.重点、难点:1.重点:(1)掌握二次根式乘、除法法则,并会运用法则进行计算;(2)能够利用二次根式乘、除法法则对根式进行化简;(3)能够将二次根式化简成“最简二次根式”。2.难点:(1)理解最简二次根式的概念;(2)能够运用积的算术平方根的性质、二次根式的除法法则将二次根式化简成“最简二次根式”。三.知识梳理:1.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。也称“积的算术平方根”。它与二次根式的乘法结合,可以对一些二次根式进行化简。2.二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。也称“商的算术平方根”。它与二根式的除法结合,可以对一些二次根式进行化简。3.最简二次根式一个二次根式如果满足下列两个条件:(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。这样的二次根式叫做最简二次根式。说明:(1)这两个条件必须同时满足,才是最简二次根式;(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。【典型例题】例1.求下列式子中有意义的x的取值范围。(1)(2)分析:此题涉及二次根式的乘法、除法公式的正确应用,特别注意公式应用的范围。(a≥0,b≥0);==(a≥0,b>0)。解:(1)+1≥0,2-≥0。解得≥-1,≤2,即-1≤≤2。(2)≥0,3->0。解得≥0,<3,即0≤<3。例2.计算:(1);(2);(3);(4)。分析:直接运用二次根式的乘法进行计算,把它们的被开方数相乘,根指数不变,如果积能开方一定要开方。解:(1)==;(2)===6;(3)===;(4)===。