ondragstart="return false" onselectstart="return false" style="cursor:pointer;-moz-user-select: none;user-select:none;margin:0" oncontextmenu="return false"
-
注:预览偶有瑕疵,不代资料本身有误,请放心下载,如遇资料质量问题,请联系400-080-6798
- 返回
-
第12章轴对称教学通案一、本章地位及编排特点1.轴对称与全等三角形之间的联系引入轴对称知识,使得我们可以从轴对称的角度再认识有关全等三角形的问题,体会用全等三角形来研究经过一次轴对称变换后的图形与原图形之间的关系的作用.建立两者的联系,可以加强轴对称等知识的运用,可以为图形之间的图形变换提供除平移之后的第二种变换方式--轴对称.2.认识平移、对称、旋转作为《数学课程标准》规定的四个内容领域之一,“空间与图形”主要研究现实世界中物体和几何图形的形状、大小、位置关系及其变换。那么,什么是变换?中学数学中所涉及的基本变换有哪些?各种不同变换的数学内涵是什么?它们之间又存在怎样的关系?(1)变换、保距变换、保角变换。通常,几何学家是按照集合的法则,通过在原图形的点与新图形(称为映象)的点之间建立一种对应关系来描述有关变换的概念的。如果一个平面图形的每一个点只对应于它在此平面内的映象中的一个点,并且映象中的每一个点也只对应于原图形中的一个点,这样的对应就叫做变换。能够保持图形的大小和形状不变的变换称为保距(合同)变换。在保距变换中,一个图形的映象中的任何两点之间的距离,等于原图形中对应的两点之间的距离,映象总是全等于原图形。保距变换主要有三种:平移变换、轴对称变换和旋转变换。而只改变图形的大小,不改变图形的形状的变换称为保角变换。在保角变换中,原图形中所有角的大小都保持不变。得到一个图形的相似图形的过程本质上就是保角变换的应用。(2)平移变换、旋转变换和轴对称变换。平移变换是最简单的保距变换。如果原图形中的点都沿着平行的途径运动一个恒等的距离而到达映象,这样的变换称为平移。对平移来说,原图形中所有的点到它的映象的距离彼此相等。距离和方向是平移的两个要件。轴对称变换是第二种保距变换。如果在一张纸上画一个图形,把一面平面镜的末端放在纸上,并且在镜子里看到这个图形,那么原图形就被反射了。由反射产生一个图形的映象的过程,也叫轴对称变换。反射由一条反射线所确定,反射线也叫对称轴。反射线是连接图形中的任意一点与该点映象之间的所有线段的垂直平分线。轴对称图形,也可以用反射来定义。如果一个图形的一部分被某一条直线反射后,得到的映象恰好等同于原图形的其余部分,这个图形即被称为轴对称图形。该直线叫做对称轴。图形的平移、旋转、折叠等活动,可以使图形动起来,有助于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究几何问题、发现几何结论的有效工具.本套教材在不同阶段安排了这些图形变换的内容.本套教材在不同阶段安排了图形变换的内容:第五章相交线与平行线—5.4平移(七年级下)第十二章轴对称(八年级上)