ondragstart="return false" onselectstart="return false" style="cursor:pointer;-moz-user-select: none;user-select:none;margin:0" oncontextmenu="return false"
-
注:预览偶有瑕疵,不代资料本身有误,请放心下载,如遇资料质量问题,请联系400-080-6798
- 返回
-
函数对称性的探究函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。一、 函数自身的对称性探究定理1.函数y=f(x)的图像关于点A(a,b)对称的充要条件是f(x)+f(2a-x)=2b证明:(必要性)设点P(x,y)是y=f(x)图像上任一点,∵点P(x,y)关于点A(a,b)的对称点P‘(2a-x,2b-y)也在y=f(x)图像上,∴2b-y=f(2a-x)即y+f(2a-x)=2b故f(x)+f(2a-x)=2b,必要性得证。